Following Coupled Electronic-Nuclear Motion through Conical Intersections in the Ultrafast Relaxation of β-Apo-8'-carotenal.

نویسندگان

  • Thomas A A Oliver
  • Graham R Fleming
چکیده

Ultrafast transient electronic absorption, one- and two- dimensional electronic-vibrational spectroscopies were used to study the nonradiative relaxation dynamics of β-apo-8'-carotenal (bapo), a model aldehyde containing carotenoid, in cyclohexane and acetonitrile solutions. 2D electronic-vibrational (2DEV) spectroscopy allows for a direct correlation between the intrinsically coupled electronic and vibrational degrees of freedom, which are thought to play an important role in driving relaxation of bapo from the bright S2 and lower-lying dark S1 state. Line shapes of features in the 2DEV spectra allow us to make more definitive assignments of excited state vibrations of bapo in acetonitrile. Anisotropy studies definitively demonstrate that the excited state dynamics of bapo do not involve a trans-cis isomerization, counter to prior hypotheses. For specific vibrational modes, the electronic and vibrational line shapes remain correlated beyond the decay of the S2 excited state, indicating that the transfer of molecules to the S1 state is impulsive and involves a conical intersection in the vertical Franck-Condon region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational conical intersections as a mechanism of ultrafast vibrational relaxation.

Presenting true crossings of adiabatic potential energy surfaces, conical intersections are a paradigm of ultrafast and efficient electronic relaxation dynamics. The same mechanism is shown to apply also for vibrational conical intersections, which may occur when two high-frequency modes (such as OH stretch vibrations) are coupled to low-frequency modes (such as hydrogen bonding modes). By deri...

متن کامل

Collisional relaxation of apocarotenals: identifying the S* state with vibrationally excited molecules in the ground electronic state S(0)*.

In recent work, we demonstrated that the S* signal of β-carotene observed in transient pump-supercontinuum probe absorption experiments agrees well with the independently measured steady-state difference absorption spectrum of vibrationally hot ground state molecules S0* in solution, recorded at elevated temperatures (Oum et al., Phys. Chem. Chem. Phys., 2010, 12, 8832). Here, we extend our sup...

متن کامل

Nonadiabatic effects in electronic and nuclear dynamics

Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent ...

متن کامل

Non-adiabatic dynamics close to conical intersections and the surface hopping perspective

Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dyn...

متن کامل

Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy

Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns). We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs) passage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 119 34  شماره 

صفحات  -

تاریخ انتشار 2015